GPM for Landslide Prediction

Massachusetts Institute of Technology

Introduction

- Landslides as weather phenomena
- Conceptual requirements for landslide prediction at relevant spatiotemporal scales
- Data available, data required
- A framework for landslide prediction
- Conclusions

andslides

Landslides as weather phenomena

- Extreme rainfall among the most common triggers
- St. Bernard landslide: TRMM recorded 500 mm
 Feb. 4-7, 2006

In the US landslides cause 25-50 fatalities and \$1-

2B in damage annually

 Ubiquitous in the steep lands of the world

 Devastating in areas with little/no hazard assessment, preventative building codes

Venezuela 1999:

What is needed to predict landslides?

- Distributed watershed hydrology models that resolve spatial soil moisture patterns at high resolution
- Data to calibrate and parameterize models
- Observations of hydrological states to constrain to models
- Hydrometeorological forcings

Process Hydrology Models

- TIN-based Real-time Integrated Basin Simulator (tRIBS)
- Multi-resolution approach
- Soil moisture at scales10 100 m
- Unsaturated lateral moisture redistribution
- Vegetation intercepts rain and alters local soil moisture

Data needs and availability

- Data to parameterize boundary conditions:
 - Topographic data SRTM
 - Vegetation data MODIS, LandSAT
 - Soils data Soil databases
- Observational data to constrain:
 - Soil moisture/canopy water content
 AMSR-E

Data needs and availability (cont.)

- Hydrometeorological forcings
 - Air temperature MODIS
 - Humidity
 MODIS
 - Radiation forcings / MODIS, GOES
- Rainfall forcing
 - High resolution rainfall (kilometers) with high frequency revisit (hours to days)...
 - > The missing piece of the puzzle!

GPM for Landslide Prediction

- Our proposed framework consists of three components:
 - 1. Estimation of the hydrologic state constrained to observation
 - 2. Prediction of landslide occurrence through near real-time slope stability assessment
 - 3. Landslide routing to provide high resolution maps of hazard

Conclusions

- Landslides are often the result of weather
- Prediction of landslides globally with sufficient spatial and time resolution requires remote sensing data
- Lynchpin of advancing landslide prediction is rainfall
- Together with other NASA products GPM serves to significantly advance landslide prediction globally